Fractional Corner Radius End Mills by ULTRATOOL The Ultra-Tool® Series 330R, 362R, and 320R are tough workhorses with Radii that can handle the vast majority of demanding applications. These tools are precision ground from Ultra-Grain®, a premium carbide substrate that couples high hardness with excellent chipping resistance. Choose from 8 different standard radii for your roughing or finishing requirements. Crank up the feed rates even more by adding one of our in-house SmoothCoat® PVD hardcoatings, and / or add SmoothEdge® to eliminate tool break-in. Note the new LOC's and OAL's on the 320R Series! ### Series 330R **Corner Radius End Mills** Two Flute • Standard Length | | | | | .010" | .015" | .020" | .030" | .045" | .060" | .090" | .125" | UnCoated | Coated | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------| | Diam | LOC | OAL | Shank | EDP# Price | Price | | 1/8 | 1/2 | 1-1/2 | 1/8 | 31050 | 31164 | 31165 | 31166 | 31167 | | | | \$9.10 | \$10.80 | | 3/16 | 5/8 | 2" | 3/16 | 31051 | 31168 | 31169 | 31170 | 31171 | 31172 | | | \$11.90 | \$14.00 | | 1/4 | 3/4 | 2-1/2 | 1/4 | 31052 | 31173 | 31174 | 31175 | 31176 | 31177 | 31178 | | \$14.70 | \$18.70 | | 5/16 | 13/16 | 2-1/2 | 5/16 | 31053 | 31179 | 31180 | 31181 | 31182 | 31183 | 31184 | 31185 | \$21.70 | \$26.70 | | 3/8 | 1″ | 2-1/2 | 3/8 | 31054 | 31186 | 31187 | 31188 | 31189 | 31190 | 31191 | 31192 | \$25.80 | \$31.10 | | 1/2 | 1″ | 3" | 1/2 | 31055 | 31193 | 31194 | 31195 | 31196 | 31197 | 31198 | 31199 | \$42.90 | \$50.00 | | 5/8 | 1-1/2 | 3-1/2 | 5/8 | 31056 | 31200 | 31201 | 31202 | 31203 | 31204 | 31205 | 31206 | \$77.90 | \$88.90 | | 3/4 | 1-1/2 | 4" | 3/4 | 31057 | 31207 | 31208 | 31209 | 31210 | 31211 | 31212 | 31213 | \$108.90 | \$121.80 | | 1" | 1-1/2 | 4" | 1″ | 31058 | 31214 | 31215 | 31217 | 31218 | 31219 | 31220 | 31221 | \$178.70 | \$197.20 | | | | | | | | | | | | | | | | #### Series 362R **Corner Radius End Mills** Three Flute • Standard Length | | | | | .010" | .015" | .020" | .030" | .045" | .060" | .090" | .125" | UnCoated | Coated | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------| | Diam | LOC | OAL | Shank | EDP# Price | Price | | 1/8 | 1/2 | 1-1/2 | 1/8 | 31060 | 31419 | 31420 | 31421 | 31422 | | | | \$9.10 | \$10.80 | | 3/16 | 5/8 | 2" | 3/16 | 31061 | 31423 | 31424 | 31425 | 31426 | 31427 | | | \$11.90 | \$14.00 | | 1/4 | 3/4 | 2-1/2 | 1/4 | 31062 | 31428 | 31429 | 31430 | 31431 | 31432 | 31433 | | \$14.70 | \$18.70 | | 5/16 | 13/16 | 2-1/2 | 5/16 | 31063 | 31434 | 31435 | 31436 | 31437 | 31438 | 31439 | 31440 | \$21.70 | \$26.70 | | 3/8 | 1″ | 2-1/2 | 3/8 | 31064 | 31441 | 31442 | 31443 | 31444 | 31445 | 31446 | 31447 | \$25.80 | \$31.10 | | 1/2 | 1″ | 3" | 1/2 | 31065 | 31448 | 31449 | 31450 | 31451 | 31452 | 31453 | 31454 | \$42.90 | \$50.00 | | 5/8 | 1-1/2 | 3-1/2 | 5/8 | 31066 | 31456 | 31457 | 31458 | 31459 | 31460 | 31461 | 31462 | \$77.90 | \$88.90 | | 3/4 | 1-1/2 | 4" | 3/4 | 31067 | 31463 | 31464 | 31465 | 31466 | 31467 | 31468 | 31469 | \$108.90 | \$121.80 | | 1" | 1-1/2 | 4" | 1″ | 31068 | 31470 | 31471 | 31472 | 31473 | 31474 | 31475 | 31476 | \$178.70 | \$197.20 | (ULTRA-Grain) #### Series 320R **Corner Radius End Mills** Four Flute • Std & Ext Length | | | | | .010" | .015" | .020" | .030" | .045" | .060" | .090" | .125" | UnCoated | Coated | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------| | Diam | LOC | OAL | Shank | EDP# Price | Price | | 1/8 | 1/2 | 1-1/2 | 1/8 | 31070 | 31101 | 31110 | 31119 | 31128 | | | | \$9.10 | \$10.80 | | 1/8 | 1″ | 3" | 1/8 | 34101 | 34110 | 34119 | 34128 | 34137 | | | | \$17.60 | \$20.20 | | 3/16 | 5/8 | 2" | 3/16 | 31071 | 31102 | 31111 | 31120 | 31129 | 31138 | | | \$11.90 | \$14.00 | | 3/16 | 1-1/4 | 3" | 3/16 | 34102 | 34111 | 34120 | 34129 | 34138 | 34146 | | | \$19.90 | \$22.90 | | 1/4 | 3/4 | 2-1/2 | 1/4 | 31072 | 31103 | 31112 | 31121 | 31130 | 31139 | 31148 | | \$14.70 | \$18.70 | | 1/4 | 1-1/2 | 4" | 1/4 | 34103 | 34112 | 34121 | 34130 | 34139 | 34147 | 34154 | | \$25.20 | \$30.30 | | 5/16 | 13/16 | 2-1/2 | 5/16 | 31073 | 31104 | 31113 | 31122 | 31131 | 31140 | 31149 | 31158 | \$21.70 | \$26.70 | | 5/16 | 1-5/8 | 4" | 5/16 | 34104 | 34113 | 34122 | 34131 | 34140 | 34148 | 34155 | 34161 | \$36.40 | \$42.80 | | 3/8 | 1″ | 2-1/2 | 3/8 | 31074 | 31105 | 31114 | 31123 | 31132 | 31141 | 31150 | 31159 | \$25.80 | \$31.10 | | 3/8 | 2" | 4" | 3/8 | 34105 | 34114 | 34123 | 34132 | 34141 | 34149 | 34156 | 34162 | \$40.90 | \$47.80 | | 1/2 | 1″ | 3" | 1/2 | 31075 | 31106 | 31115 | 31124 | 31133 | 31142 | 31151 | 31160 | \$42.90 | \$50.00 | | 1/2 | 2" | 4" | 1/2 | 34106 | 34115 | 34124 | 34133 | 34142 | 34150 | 34157 | 34163 | \$59.10 | \$68.60 | | 5/8 | 1-1/2 | 3-1/2 | 5/8 | 31076 | 31107 | 31116 | 31125 | 31134 | 31143 | 31152 | 31161 | \$77.90 | \$88.90 | | 5/8 | 3" | 6" | 5/8 | 34107 | 34116 | 34125 | 34134 | 34143 | 34151 | 34158 | 34164 | \$116.60 | \$133.80 | | 3/4 | 1-1/2 | 4" | 3/4 | 31077 | 31108 | 31117 | 31126 | 31135 | 31144 | 31153 | 31162 | \$108.90 | \$121.80 | | 3/4 | 3" | 6" | 3/4 | 34108 | 34117 | 34126 | 34135 | 34144 | 34152 | 34159 | 34165 | \$188.70 | \$208.70 | | 1" | 1-1/2 | 4" | 1" | 31078 | 31109 | 31118 | 31127 | 31136 | 31145 | 31154 | 31163 | \$178.70 | \$197.20 | | 1" | 3" | 6" | 1″ | 34109 | 34118 | 34127 | 34136 | 34145 | 34153 | 34160 | 34166 | \$327.30 | \$353.40 | new! New LOC's and OAL's in 320R Series! Page # 59 rev2020.1 🚳 0 ## Application Data for Standard ULTRATOOL End Mills $The milling data \, presented \, below \, is \, for \, all \, \text{``standard''} \, Series \, of \, Ultra \, end \, mills \, (data \, is \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, respective \, product \, page \, for \, in the milling data \, presented \, separately \, on \, each \, presented \, separately \, each \, page \, ach \, page \,$ $our \, application-specific \, high \, performance \, designs). \,\, Note: \,\, When \, using \, Smooth Coat \, \& \,\, Smooth Edge \, surface \, treatments, \,\, Surface \, Feet \, or \,\, Meters \,\, designs).$ Per Minute can be increased from the stated levels by at least 25%. 0 Peripheral Milling data based on axial depth ≤ 100% of tool diameter & radial depth of ≤ 25% of tool diameter. Slot Milling data based on axial depth of cut = 50% of tool diameter. End Mill Specifications: Diameter: +.000/-.002 Shank Diameter: +.0000 / -.0003 LOC: +.060/-.000 OAL: ± .060 Helix: ± 2° Milling; Fractional | ≤ 25% 01 (| | | | | | | Helix: : | | | | | | |--
---|---|--|--|---|---|--|--|---|--|--|--| | Material | SFPM | SFPM | 1/8" | 3/16" | 1/4" | 5/16" | 3/8" | 7/16" | 1/2" | 5/8" | 3/4" | 1" | | Steel | Peripheral | Slotting | | | | | Feed Pe | r Tooth (F | PT) | | | | | 1018/1020 | 150 to 350 | 150 to 300 | .0005 | .0010 | .0015 | .0018 | .0020 | .0025 | .0030 | .0035 | .0040 | .0045 | | 4140/4340/P20 | 150 to 300 | 125 to 225 | .0005 | .0007 | .0010 | .0012 | .0015 | .0018 | .0020 | .0025 | .0030 | .0040 | | 4140/4340/120 | 13010300 | 123 (0 223 | .0005 | .0007 | .0010 | .0012 | .0015 | .0010 | .0020 | .0023 | .0030 | .0040 | | Stainless Steel | | | | | | | | | | | | | | 303/304/316 | 150 to 300 | 125 to 250 | .0005 | .0007 | .0010 | .0012 | .0015 | .0018 | .0020 | .0030 | .0040 | .0040 | | | | 125 to 250 | | | .0010 | .0012 | | .0018 | .0020 | .0025 | .0035 | .0038 | | 410 / 420 / 440C | 150 to 300 | | .0005 | .0007 | | | .0015 | | | | | | | 15-5/17-4 ≤ 32HRc | 125 to 250 | 100 to 225 | .0005 | .0007 | .0010 | .0012 | .0015 | .0018 | .0020 | .0025 | .0030 | .0038 | | 15-5/17-4 ≥ 32HRc | 100 to 150 | 100 to 150 | .0003 | .0005 | .0010 | .0012 | .0015 | .0015 | .0015 | .0020 | .0030 | .0038 | | 13-8/316L | 125 to 300 | 125 to 250 | .0005 | .0007 | .0010 | .0012 | .0015 | .0018 | .0020 | .0030 | .0040 | .0040 | | Tool Steel | | | | | | | | | | | | | | | 1254-250 | 1004- 200 | 0005 | 0007 | 0010 | 0013 | 0015 | 0010 | 0030 | 0025 | 0020 | 000 | | A2/D2/H13 ≤ 32HRc | 125 to 250 | 100 to 200 | .0005 | .0007 | .0010 | .0012 | .0015 | .0018 | .0020 | .0025 | .0030 | .003 | | A2/D2/H13 ≥ 32HRc | 100 to 150 | 100 to 125 | .0003 | .0005 | .0010 | .0012 | .0015 | .0015 | .0015 | .0020 | .0030 | .0035 | | Titanium | | | | | | | | | | | | | | 6Al-4V | 120 to 250 | 100 to 175 | .0005 | .0007 | .0010 | .0012 | .0012 | .0018 | .0020 | .0020 | .0030 | .0040 | | OAI-4V | 12010230 | 100101/3 | .0003 | .0007 | .0010 | .0012 | .0012 | .0010 | .0020 | .0020 | .0030 | .0040 | | High Temp Alloys | | | | | | | | | | | | | | Inconel 625 | 50 to 150 | 50 to 125 | .0005 | .0007 | .0010 | .0012 | .0012 | .0018 | .0020 | .0020 | .0025 | .0030 | | Inconel 718 | 50 to 150 | 50 to 125 | .0003 | .0007 | .0010 | .0012 | .0012 | .0015 | .0025 | .0020 | .0025 | .002 | | inconct / 10 | 30 (0 130 | 30 (0 123 | .0005 | .0005 | 10010 | 10012 | .0012 | .0013 | 10013 | .0020 | .0023 | .002. | | Cast Iron | | | | | | | | | | | | | | | 1504- 250 | 125 to 300 | 0005 | .0007 | 0010 | 0013 | 0015 | 0010 | 0020 | 0000 | 00.40 | .0045 | | Gray Iron ≤ 32HRc | 150 to 350 | | .0005 | | .0010 | .0012 | .0015 | .0018 | .0020 | .0030 | .0040 | | | Ductile Iron | 150 to 300 | 125 to 250 | .0005 | .0007 | .0010 | .0012 | .0015 | .0018 | .0020 | .0025 | .0035 | .004 | | | | | | | | | | | | | | | | Non-Ferrous | | | | | | | | | | | | | | 6061 T6 Aluminum | up to 2000 | up to 1500 | .0010 | .0020 | .0020 | .0025 | .0030 | .0035 | .0040 | .0050 | .0060 | .0070 | | | up to 1200 | up to 1000 | .0010 | .0010 | .0020 | .0022 | .0025 | .0028 | .0030 | .0040 | .0040 | .0050 | | Copper,Brass,Bronze | up 10 1200 | | | | | | 00.40 | 0050 | .0060 | 0000 | .0100 | .0120 | | Copper,Brass,Bronze
Plastic | up to 2000 | up to 1500 | .0010 | .0020 | .0030 | .0035 | .0040 | .0050 | .0000 | .0080 | .0100 | .0120 | | | up to 2000
Diameter (m | up to 1500
m): +.000 /
eter(mm): +.0 | .051mm | | LOC: +1 | .0035
1.52/-0.0
1.52mm | | .0050 | .0000 | .0000 | .0100 | | | Plastic etric End Mill | up to 2000
Diameter (m | m): +.000/ | .051mm | | LOC: +1 | 1.52/-0.0 | | .0050 | 12 mm | 16 mm | 20 mm | Metr | | Plastic
stric End Mill
ecifications: | up to 2000 Diameter (m Shank Diame SMPM | m): +.000 /
eter(mm): +.0
SMPM | .051mm
000/00 | 7mm | LOC: +1
OAL: ±1 | 1.52/-0.0
1.52mm | 00mm
8 mm | 10 mm | 12 mm | | | Metr | | Plastic stric End Mill ecifications: Material Steel | up to 2000 Diameter (m Shank Diame SMPM Peripheral | m): +.000 /eter(mm): +.0
SMPM
Slotting | .051mm
000 /007
2 mm | 7mm
3 mm | LOC: +1
OAL: ±1 | 1.52 / -0.0
1.52mm
6mm | 00mm
8 mm
Feed Pe | 10 mm
r Tooth (F | 12 mm
PT) | 16 mm | 20 mm | Metr
25 mn | | Plastic tric End Mill ecifications: Material Steel 1018/1020 | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 | m): +.000 /
eter(mm): +.0
SMPM
Slotting
45 to 90 | .051mm
.000 /007
2 mm | 7mm
3 mm
0.012 | LOC: +1
OAL: ±1
4 mm | 1.52/-0.0
1.52mm
6mm | 8 mm
Feed Pe
0.045 | 10 mm
r Tooth (F
0.050 | 12 mm
PT)
0.080 | 16 mm
0.090 | 20 mm 0.100 | Metr 25 mn 0.120 | | Plastic stric End Mill ecifications: Material | up to 2000 Diameter (m Shank Diame SMPM Peripheral | m): +.000 /eter(mm): +.0
SMPM
Slotting | .051mm
000 /007
2 mm | 7mm
3 mm | LOC: +1
OAL: ±1 | 1.52 /
-0.0
1.52mm
6mm | 00mm
8 mm
Feed Pe | 10 mm
r Tooth (F | 12 mm
PT) | 16 mm | 20 mm | Metr 25 mn 0.120 | | Plastic stric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 | m): +.000 /
eter(mm): +.0
SMPM
Slotting
45 to 90 | .051mm
.000 /007
2 mm | 7mm
3 mm
0.012 | LOC: +1
OAL: ±1
4 mm | 1.52/-0.0
1.52mm
6mm | 8 mm
Feed Pe
0.045 | 10 mm
r Tooth (F
0.050 | 12 mm
PT)
0.080 | 16 mm
0.090 | 20 mm 0.100 | Metr 25 mn 0.120 | | Plastic tric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 Stainless Steel | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 | .051mm
.000/000
2mm
0.010
0.010 | 7mm
3 mm
0.012
0.012 | LOC: +1
OAL: ±1
4 mm
0.025
0.018 | 1.52/-0.0
1.52mm
6mm
0.038
0.025 | 8 mm
Feed Pe
0.045
0.030 | 10 mm
r Tooth (F
0.050
0.038 | 12 mm
PT)
0.080
0.050 | 16 mm
0.090
0.065 | 20 mm
0.100
0.080 | Metr
25 mm
0.120
0.100 | | Plastic stric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 Stainless Steel 303/304/316 | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 | .051mm
.00/00
2mm
0.010
0.010 | 7mm
3 mm
0.012
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018 | 1.52 / -0.0
1.52mm
6 mm
0.038
0.025 | 8 mm
Feed Pe
0.045
0.030 | 10 mm
r Tooth (F
0.050
0.038 | 12 mm
PT)
0.080
0.050 | 16 mm
0.090
0.065 | 20 mm
0.100
0.080 | Metr
25 mn
0.120
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 Stainless Steel 303/304/316 410/420/440C | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 45 to 90 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 | .051mm
.00/00
2mm
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018 | 1.52 / -0.0
1.52mm
6 mm
0.038
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050 | 16 mm
0.090
0.065
0.080
0.065 | 20 mm
0.100
0.080
0.100
0.080 | Metr
25 mn
0.120
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 Stainless Steel 303/304/316 410/420/440C 15-5/17-4≤32HRc | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 | .051mm
.00/007
2mm
0.010
0.010
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018 | 1.52/-0.0
1.52mm
6 mm
0.038
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 | 20 mm
0.100
0.080
0.100
0.080
0.080 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 Stainless Steel 303/304/316 410/420/440C 15-5/17-4≤32HRc 15-5/17-4≥32HRc | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.038 | 0.090
0.065
0.080
0.065
0.065
0.050 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.080 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100 | | Plastic stric End Mill ecifications: Material Steel 1018/1020 | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 | .051mm
.00/007
2mm
0.010
0.010
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018 | 1.52/-0.0
1.52mm
6 mm
0.038
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 | 20 mm
0.100
0.080
0.100
0.080
0.080 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8/316L | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.038 | 0.090
0.065
0.080
0.065
0.065
0.050 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.080 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel | up to 2000 Diameter (m Shank Diameter SMPM Peripheral 45 to 110 45 to 90 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.038
0.050 | 0.090
0.065
0.080
0.065
0.065
0.050
0.080 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.080
0.100 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 | .051mm
.00/00
2mm
0.010
0.010
0.010
0.010
0.010
0.010
0.005
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.100 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc | up to 2000 Diameter (m Shank Diameter SMPM Peripheral 45 to 110 45 to 90 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.038
0.050 | 0.090
0.065
0.080
0.065
0.065
0.050
0.080 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.080
0.100 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20
Stainless Steel 303/304/316 410/420/440C 15-5/17-4 \(\ceig \) 32HRc 13-8/316L Tool Steel A2/D2/H13 \(\ceig \) 32HRc A2/D2/H13 \(\ceig \) 32HRc | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 | .051mm
.00/00
2mm
0.010
0.010
0.010
0.010
0.010
0.010
0.005
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.100 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100
0.100 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc Titanium | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 30 to 45 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.005 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012
0.012 | LOC: +1 OAL: ±1 4mm 0.025 0.018 0.018 0.018 0.018 0.012 0.018 0.012 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.038 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.100 0.080 0.080 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100
0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc Titanium | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 | .051mm
.00/00
2mm
0.010
0.010
0.010
0.010
0.010
0.010
0.005
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.050
0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 | 20 mm
0.100
0.080
0.100
0.080
0.080
0.100 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100
0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V | up to 2000 Diameter (m Shank Diame SMPM Peripheral 45 to 110 45 to 90 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 30 to 45 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.005 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012
0.012 | LOC: +1 OAL: ±1 4mm 0.025 0.018 0.018 0.018 0.018 0.012 0.018 0.012 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm
Feed Pe
0.045
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.038 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.100 0.080 0.080 | Metr
25 mn
0.120
0.100
0.100
0.100
0.100
0.100
0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 30 to 45 35 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 | 0.051mm
000 /007
2 mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012
0.012
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0. | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.065 0.065 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mm 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000 0.000 0.000 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 30 to 45 35 to 75 30 to 45 35 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 | 0.051mm
000 /007
2 mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.010
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L
Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 30 to 45 35 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 | 0.051mm
000 /007
2 mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.010 | 7mm
3 mm
0.012
0.012
0.012
0.012
0.012
0.007
0.012
0.012
0.012 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0. | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.065 0.065 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 | up to 2000 Diameter (m Shank Diameter (m Shank Diameter (m SMPM Peripheral 45 to 110 45 to 90 45 to 90 38 to 75 30 to 45 38 to 90 38 to 75 30 to 45 35 to 75 30 to 45 35 to 75 | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 | 0.051mm
000 /007
2 mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.010
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 | LOC: +1
OAL: ±1
4mm
0.025
0.018
0.018
0.018
0.012
0.018
0.012
0.018 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.005
0.010
0.010
0.005 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.007 0.012 0.007 | LOC: +1 OAL: ± 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 | 0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.038 0.050 0.038 0.050 0.038 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 0.065 0.050 0.050 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.100 0.090 0.100 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron Gray Iron ≤ 32HRc | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.005
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 0.012 0.012 0.012 0.012 | LOC: +1 OAL: ± 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.012 | 0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.038 0.050 0.050 0.038 0.050 0.050 0.038 0.050 0. | 16 mm 0.090 0.065 0.080 0.065 0.050 0.080 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.100 0.090 0.100 0.090 | | Plastic tric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron Gray Iron ≤ 32HRc | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 |
0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.005
0.010
0.010
0.005 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.007 0.012 0.007 | LOC: +1 OAL: ± 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 | 0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.038 0.050 0.038 0.050 0.038 | 16 mm 0.090 0.065 0.080 0.065 0.065 0.050 0.080 0.065 0.050 0.050 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.100 0.090 0.100 0.090 | | Plastic Plastic Atric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron Gray Iron ≤ 32HRc | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.005
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 0.012 0.012 0.012 0.012 | LOC: +1 OAL: ± 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.012 | 0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.038 0.050 0.050 0.038 0.050 0.050 0.038 0.050 0. | 16 mm 0.090 0.065 0.080 0.065 0.050 0.080 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.100 0.090 0.100 0.090 | | Plastic stric End Mill ecifications: Material Steel 1018/1020 4140/4340/P20 Stainless Steel 303/304/316 410/420/440C 15-5/17-4≤32HRc 15-5/17-4≥32HRc | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.010
0.005
0.010
0.010
0.005
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 0.012 0.012 0.012 0.012 | LOC: +1 OAL: ± 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.012 | 0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 00mm 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm
r Tooth (F
0.050
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.038 0.050 0.050 0.038 0.050 0.050 0.038 0.050 0. | 16 mm 0.090 0.065 0.080 0.065 0.050 0.080 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mn 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.100 0.090 0.100 0.090 | | Plastic stric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron Gray Iron ≤ 32HRc Ductile Iron Non-Ferrous | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 40 to 90 40 to 75 | 0.051mm
000/007
2 mm
0.010
0.010
0.010
0.010
0.005
0.010
0.005
0.010
0.005
0.010
0.010
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 0.012 0.012 0.012 0.012 | LOC: +1 OAL: ±1 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.012 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm r Tooth (F 0.050 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.050 0.038 0.050 0.038 0.050 0.050 0.038 | 16 mm 0.090 0.065 0.080 0.065 0.050 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mm 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.090 0.100 0.070 0.065 | | Plastic stric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron Gray Iron ≤ 32HRc Ductile Iron Non-Ferrous 6061 T6 Aluminum | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 40 to 90 40 to 75 | 0.051mm
000/007
2mm
0.010
0.010
0.010
0.010
0.005
0.010
0.005
0.010
0.005
0.010
0.005 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.007 0.012 0.007 0.012 0.012 0.007 | LOC: +1 OAL: ±1 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.018 0.012 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm r Tooth (F 0.050 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 | 12 mm
PT)
0.080
0.050
0.050
0.050
0.038
0.050
0.050
0.050
0.038
0.050
0.050
0.050
0.050 | 16 mm 0.090 0.065 0.080 0.065 0.050 0.080 0.065 0.050 0.050 0.050 0.050 0.050 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mm 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.090 0.100 0.070 0.065 | | Plastic stric End Mill ecifications: Material Steel 1018 / 1020 4140 / 4340 / P20 Stainless Steel 303 / 304 / 316 410 / 420 / 440C 15-5/17-4 ≤ 32HRc 15-5/17-4 ≥ 32HRc 13-8 / 316L Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc Titanium 6Al-4V High Temp Alloys Inconel 625 Inconel 718 Cast Iron Gray Iron ≤ 32HRc Ductile Iron Non-Ferrous | up to 2000 Diameter (m Shank | m): +.000 / eter(mm): +.0 SMPM Slotting 45 to 90 40 to 70 40 to 75 40 to 75 30 to 70 30 to 45 40 to 75 30 to 60 30 to 40 30 to 53 15 to 38 15 to 38 40 to 90 40 to 75 | 0.051mm
000/007
2 mm
0.010
0.010
0.010
0.010
0.005
0.010
0.005
0.010
0.005
0.010
0.010
0.010 | 7mm 3 mm 0.012 0.012 0.012 0.012 0.012 0.007 0.012 0.012 0.007 0.012 0.012 0.012 0.012 | LOC: +1 OAL: ±1 4mm 0.025 0.018 0.018 0.018 0.012 0.018 0.012 0.018 0.012 0.018 0.012 | 0.038
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025 | 8 mm Feed Pe 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 | 10 mm r Tooth (F 0.050 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 | 12 mm
PT) 0.080 0.050 0.050 0.050 0.050 0.050 0.038 0.050 0.038 0.050 0.050 0.038 | 16 mm 0.090 0.065 0.080 0.065 0.050 0.065 0.050 0.065 0.050 0.065 | 20 mm 0.100 0.080 0.100 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 | Metr 25 mm 0.120 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.090 0.090 0.100 0.070 0.065 | ## Components of Guaranteed Quality COMPONENT#1: Carbide Substrate From being the first Company to introduce MicroGrain carbide to the mass-market round tool industry through the present day, Tool Alliance® has consistently innovated new powder and grade combinations for demanding applications. We recognize that our material is the very first Significant Characteristic. By creating partnerships with a limited number of tungsten powder and cemented-carbide material suppliers, we are able to guarantee that our customers receive precision-tolerance tools ground from only the purest, finest grades available worldwide. The following photographs of Ultra-Carb® 1 and Ultra-Grain® 1 respectively demonstrate the complexity of the compound we commonly refer to as Cemented Carbide. Taken at magnification of 10,000 X through an SEM (Scanning Electron Microscope), the visible grains are tungsten while the cobalt binder appears as dark shadows. The largest tungsten grains appearing in the Ultra-Carb photo are less than one micron in size. Note that these grades are two samples representing more than a dozen different substrates we use throughout our product lines, each having a particular application niche. Compared to other industry participants, you will find that Tool Alliance offers the best month-to-month and year-to-year consistency in carbide grain structure. Ultra-Carb® 1 Cobalt Percentage: 6% Grain Size (µm): ≤ 0.8 Hardness: 93.5 HRa Fracture Toughness (K1c): 6.6 TRS (GPa): 3.8 Density (gm/cc): 14.90 **ULTRA-Carb**® Ultra-Grain® 1 Cobalt Percentage: 10% Grain Size (µm): ≤ 0.7 Hardness: 92.7 HRa Fracture Toughness (K1c): 7.9 TRS (GPa): 4.1 Density (gm/cc): 14.30 (III) TOA Crains (ULTRA-Grain) ## **SmoothGrind®** COMPONENT #2: The Grinding Process After selecting the best material available, Tool Alliance has perfected the manufacturing technology to optimize 100% of its physical properties. We call this process SmoothGrind®. Years in development, SmoothGrind is the result of a proprietary combination of material, abrasive, coolant, machine-tool, software, and grinding method technologies that produce ULTRATOOL 200X **SmoothGrind®** Competitor's cutting tools with superior qualitative characteristics. Sharper and longer lasting cutting edges, enhanced work piece finishes, and much improved lubricity are just some of the benefits brought to you by the latest solid carbide rotary tooling advances from Tool Alliance. The two photos above display an Ultra-Tool end mill primary relief featuring SmoothGrind (left) versus a major competitor's product (right). To fully demonstrate the difference, the Ultra end mill is shown at double the magnification. Note the straight line of our end mill's primary relief in comparison to the jagged edge of the competing product. Keep in mind the competitive end mill is a very good product that has a large following, yet the difference is substantial. ## **SmoothContricity®** COMPONENT#3: The Tooling Process All the best physical ingredients are wasted unless they are all pulled together in a comprehensive system that maximizes their respective attributes. Tool Alliance calls this process SmoothContricity®. Our customer base represents the leading edge of machine tool utilization, and SmoothContricity ensures that optimum results can be obtained in a variety of ways; minimized run-out (TIR), industry-leading tolerances on diameter & radius, and 100% Shrink Fit Ready (SFR) shanks. Combined, these attributes allow our consumers to reach full machining potential and position the cutting tool as a systematic contributor to process consistency and repeatability. .0001 SmoothEdge atop cylindrical margin atop primary relief. #### **COMPONENT #4: The Edge Preparation Process** Our cutting edges are literally too sharp for certain materials. For our carbide inserts and now increasingly for our solid carbide round tools, proper edge preparation can yield huge productivity improvements to "out of the box" tool application. Using a treatment we call SmoothEdge® and performed on machine tools developed in our own R&D lab, we've taken the mystery out of tool "break-in" and provided a consistency that can be counted on time and again. The processes range from a microblasting treatment using extremely fine aluminum oxide powder to a diamond-lapping compound to brushes. All are application-specific to sound and run smooth from the first cut and protect your tooling investment from unnecessary potential for chipping during your initial tooling paths. Big productivity gains can be achieved in certain applications as well due to improved chip formation and evacuation. Learn more about SmoothEdge on Page #55. Our coating @ 2,000X (top). Everybody else's (bottom). # **SmoothCoat®** COMPONENT #5: The Coating Process The challenge of finding a coating method to leverage 100% of the inherent assets of our carbide grade and grinding technologies was difficult. What we finally discovered was such a perfect fit and so logical for our product lines that we invested heavily into the process we now call SmoothCoat®. Much more than simply the standard arc-deposited PVD coating, SmoothCoat involves sputter multi-layering and a multi-step prep & post operation called Micro-Blasting. The advantages of this procedure include relieving of tensile stresses underneath the cutting edge, increased stability of the coating surface, and perhaps most importantly, elevating SmoothGrind even another notch by leveling and activating the cemented carbide substrate. The result is a smooth, shiny, tough, and durable surface that can withstand tomorrow's machining requirements and outlast competitive coatings. Additionally, we've made it a standard feature on thousands of our standard catalog items. Our coating services are performed within our own factories for quality & extremely quick turnaround times. ### Coating Availability Order by adding the suffix TA, TN, AT, TC, A1, D1, or D2 to the EDP #. **UnCoated** **Material Hardness** **Premium Coatings available** Standard Coatings available at "Coated" List Price materials up to 70HRc including high-temp exotics, nickel based alloys, die & hardened steels ideal for dry milling & high speed machining materials up to 50HRc including steel, stainless steel, & cast iron areat choice for wide range of materials wet & dry applications up to 30HRc excellent lubricity & wear aluminum, steel & stainless steel > lower temp applications aluminum, titanium, & non-ferrous tremendous lubricity, reduced weld allows for dry milling extreme hardness for wearability in graphites, plastics, silicon alloys & other abrasive materials sharpest diamond edge Multiple in-house coating systems offer superb quality and service. extreme hardness for long life (10-50x) in graphite, carbon, composites & high silicon aluminum > thickest diamond coating **SmoothCoat®** Material Abrasiveness \blacksquare Page # 55 rev2020.1 ## ULTRATOOL Technical Data #### **The Edge Preparation Process** Our cutting edges are literally too sharp for certain materials. For our carbide inserts and now increasingly for our solid carbide round tools, proper edge preparation can yield huge productivity improvements to "out of the box" tool application. Using a process we call SmoothEdge® and performed on machine tools developed in our own R&D lab, we've taken the mystery out of tool "break-in" and provided a consistency that can be counted on time and again. All five types of SmoothEdge will yield different benefits dependent upon application. SmoothEdge will make your tools sound and run smooth from the first cut and protect your tooling investment from unnecessary potential for chipping during initial tool paths. Combine Smooth Edge with our other value added features to design the ultimate cutting solution. #### Primary SmoothCoat recommendations: A1 for SE2 TA for SE4 AT for SE5 while on others it can be added as a same day post treatment for a small charge.
Ask your Inside Sales representative about SmoothEdge today! #### SmoothEdge 1 Our newest technology can achieve incredible productivity increases in specific applications. Many of our new Series include SmoothEdge as a standard feature, A microblasting treatment using extremely fine aluminum oxide powder to smooth the carbide surface while generating a very light edge preparation. This feature comes standard with any SmoothCoat® coating. Uses: Highly recommended for most milling and drilling applications. #### SmoothEdge 2 A lapping treatment to create extreme lubricity & smoothness with minimal edge prep on uncoated tools. Uses: Highly recommended for milling and drilling of aluminum and other non-ferrous applications using UnCoated, A1, or TC coated tools. ### SmoothEdge 3 Combines microblasting and lapping for a light hone with extreme lubricity. Uses: Highly recommended for a wide range of general purpose machining applications using coated tools. #### SmoothEdge 4 Adds a proprietary hone to the blasting and lapping cycles for a medium edge prep with excellent lubricity. Uses: Highly recommended for milling and drilling applications involving general steels, stainless, and cast iron. Doubles the honing and lapping cycle for maximum edge strength; a robust edge preparation combined with excellent lubricity characteristics. Uses: Highly recommended for milling and drilling applications involving stainless, hightemp alloys, and exotics. ULTRATOOL Technical Data With so many variables present in the machining process, it is essential to optimize every possible factor to achieve world-class efficiency. Your choice of a genuine Ultra-Tool® Solid Carbide product is an excellent first step in the process. Ultra-Tool® Solid $Carbide\ products\ are\ high-performance\ tools\ that\ will\ perform\ bestin\ a\ machining\ environment\ characterized\ by\ rigid\ fixturing$ and minimal spindle runout. Attention to proper speed and feed will eliminate vibration, chatter, and overheating as well as extending tool life. Generally speaking, the peripheral speed of solid carbide tools will vary with the hardness of the material being cut. The harder the material, the slower the speed. High speed and insufficient feed will cause work surface glazing and poor tool life. Chipping of cutting edges is an indication of chatter which can be caused by too high of speed, too light of cut, or improper support of the tool or workpiece. Handling is also very important; sharpened cutting edges should never be allowed to come into contact with any hard object (or another tool) in a non-machining environment as they will chip easily. Keep your Ultra-Tool® products in their original protective packaging until ready for use. The guidelines on the following pages are generalities designed to demonstrate the operating window within which you may experience the best results. The charts and information provided should prove valuable in longer tool life with greatly reduced operational costs. This information is for uncoated product: SmoothCoat products will have significantly higher speed and feed rates. For more information contact an Ultra-Tool® Factory Engineer, Sales Manager or consult our websites at ultra-tool.com and toolalliance.com. eMails can be sent to technical@toolalliance.com. Ultra-Tool International, Inc. is constantly striving to improve its processes, specifications, and tolerances. As such, products are subject to change without prior notice. WARNING: Grinding or other use of this tool may produce hazardous dust and fumes which may endanger health. Grinding or modification should be done by professionals only. To avoid adverse health effects, read the material safety data sheet for this product. Utilize adequate ventilation and appropriate protection. Cutting tools may shatter when broken; eye protection in vicinity of use is strongly advised. MSDS available at www.ultra-tool.com. #### **Commonly Used Formulas:** Surface Feet Minute (SFM)=RPM x Diam. x .262 Revolutions Per Minute (RPM)= $3.82 \times (SFM / Diam.)$ Feed Rate (IPM)=IPT x #teeth x RPM Drilling (IPM)=IPR x RPM Feed Per Tooth (IPT)=IPM / (#teeth x RPM) Convert Inches to millimeters: Multiply by 25.4 Convert millimeters to Inches: Multiply by .03937 Tech Help Call, eMail us at technical@toolalliance.com, or copy / fax us this page for detailed assistance beyond what printed materials can provide. Please have the following information available to assure we can promptly process a response. **Checklist: Tool Description** **Application Description** **Work Piece Material** Hardness (HRc) **Current Speed (RPM or SFPM)** **Current Feed (CPT or IPM or FPR)** **Axial DOC** Radial DOC Hole Depth (drilling) **Machine Tool** Slot Milling Pocket Millina Peripheral Milling 0 phone 714.898.9224 / 800.854.2431 / fax 714.891.7816 5451 McFadden Avenue • Huntington Beach, CA 92649 Page # 57 rev2020.1 🚳 ## Application Tips for ULTRATOOL Solid Carbide Products ### Trouble Shooting for Ultra-Tool® Carbide End Mills | Duchlous | Course | Calution | |-------------------------------------|---|--| | Problem | Cause | Solution | | Chipping | Feed rate too high Up milling (conventional) Cutting edge too sharp Chattering Loose tool Workpiece rigidity Tool rigidity Low cutting speed Loose toolholder | Reduce feed rate Change to down milling (climb) Hone cutting edge or allow break-in Reduce RPM Remove, clean, and retighten Tighten workpiece holding method Shorten LOC, place shank further up holde Increase RPM Remove from spindle, clean and replace | | Wear | High cutting speed Low feed rate Up milling (conventional) Hard material Poor chip evacuation Improper cutter helix Poor coolant | Reduce RPM Increase feed rate Change to down milling (climb) Use coated tool Reposition coolant lines, use air blasting Change to recommended helix angle Replace coolant or correct mixture | | Breakage | Feed rate too high Depth of cut too large Poor tool rigidity Tool wear Poor chip evacuation | Reduce feed rate Reduce depth of cut Shorten LOC, place shank further up hold Replace/regrind sooner Reposition coolant lines, use air blasting | | Chattering | Speed and feed too high Poor toolholder rigidity Poor spindle rigidity Workpiece rigidity Relief angle too high Depth of cut too large Poor tool rigidity | Reduce feed rate Replace with shorter/more rigid holder Use larger spindle or different machine too Tighten workpiece holding method Regrind with smaller relief angle Reduce depth of cut Shorten LOC, place shank further up holding | | Short Life | Cutter/workpiece friction Hard material Poor material condition Improper cutter angle Poor coolant | Use coated tool Use coated tool Use coated tool, clean material surface Regrind with proper primary relief angle Replace coolant or correct mixture | | Chip Packing | Feed rate too high Low cutting speed Insufficient chip room Insufficient coolant | Reduce feed rate or increase speed Increase RPM or reduce feed rate Use tool with less flutes, increase helix Increase volume of coolant | | Poor Surface
Finish | Feed rate too high Low cutting speed Tool wear Edge build up Depth of cut too large Chip welding | Reduce feed rate Increase RPM Replace or regrind tool Increase RPM, switch to higher helix tool Reduce depth of cut Increase volume of coolant | | Burring or
Workpiece
Chipping | Tool wear Improper helix angle Feed rate too high Depth of cut too large | Replace or regrind tool Change to recommended helix angle Reduce feed rate Reduce depth of cut | | Workpiece
Inaccuracy | Loose/worn toolholder Poor toolholder rigidity Poor spindle rigidity Insufficient number of flutes Tool deflection | Repair or replace Replace with shorter/more rigid toolholder Use larger spindle or different machine too Use tool with higher flute quantity Shorten LOC, place shank further up holder | | Trouble Shootin | for Ultra-T | Tool® Carbide Dr | ill | |------------------------|-------------|------------------|-----| |------------------------|-------------|------------------|-----| | Problem | Cause | Solution (see key below) | |--------------------------------------|--|---| | Heavy Wear at
Outer Edge | Insufficient coolant Incorrect speed & feed | • 5, 6
• 1, 2, 8 | | Chipping at
Outer Cutting
Edge | Loose tool, tool movement Workpiece movement Poor coolant conditions Incorrect speed & feed | • 8, 10, 11, 12, 14, 16, 17, 21
• 8, 12, 13, 21
• 5, 6
• 1, 2, 3, 4 | | Drill Point
Chipping | Loose tool, tool movement Incorrect speed & feed Drill centering | • 10, 11, 12, 14
• 1, 2, 3, 4
• 8, 10, 11, 12, 21 | | Margin Wear | Drill margin rubbing wall Poor chip evacuation Poor coolant conditions Workpiece movement | • 20 (check drill for backtaper)
• 5, 6, 8, 20
• 5, 6
• 8, 13, 21 | | Tool Breakage | Loose tool, tool movement Workpiece movement Wrong drill type Poor coolant conditions Incorrect speed & feed | • 8, 10, 11, 12, 14, 16, 17, 21
• 8, 12, 13, 21
• 9, 15, 16, 18, 19, 20
• 5, 6
• 1, 2, 3, 4 | | Poor Tool Life | Incorrect speed & feed Poor coolant conditions Wrong drill point | • 1, 2, 3, 4
• 5, 6
• 8, 21 | | Drill Walk | Incorrect speed & feed Tool wear Wrong drill point Material condition | • 1, 2
• 7, 8, 21
• 8, 10, 11, 21
• 11, 12, 15, 16, 17 | | Chip Welding |
Poor coolant conditions Wrong drill type | • 5, 6
• 19, 20 | | Hole Size
Inaccuracy | Incorrect speed & feed Poor coolant conditions Loose tool Wrong drill type | • 1, 2, 3, 4
• 5, 6
• 14
• 9, 18 | | Non-Cylindrical
Hole | Loose tool, tool movement Workpiece movement Incorrect speed & feed Wrong drill type | • 8, 10, 11, 12, 14, 16, 17
• 13
• 1, 2
• 18, 21 | | Heavy Burr | Incorrect speed & feed Incorrect drill point | • 1, 2
• 8, 21 | | Blue Chips | Poor coolant conditions Tool wear | • 5, 6
• 7, 8 | | Long Chips | Poor point grind Incorrect speed & feed | • 8
• 1, 2 | | Solutions
Key
for Drills | 2) Increase feed 9) Col
3) Increase RPM 10) Usi
4) Reduce feed 11) Spo
5) Increase coolant 12) Cle | prove rigidity/clamp 20) Use parabolic design | ### Trouble Shooting for Ultra-Tool® Carbide Reamers | Problem | Cause | Solution | Problem | Cause | Solution | |-------------------------|--|---|----------------|--|---| | Chatter | High cutting speed Feed rate too low Workpiece movement Toolholder rigidity Tool rigidity | Lower RPM or increase feed rate Increase feed rate Tighten workpiece rigidity Tighten toolholder or reduce float Use shorter tool, place further up holder | Poor Finish | Feed rate too low Insufficient stock removal Poor hole condition Poor coolant Insufficient coolant | Increase feed rate Use smaller diameter starter drill Work-hardened hole; change drilling typ Replace/correct coolant mixture Increase coolant volume | | Tool Wear /
Chipping | Incorrect feed rate Incorrect speed Poor hole condition Abrasive material Poor chip evacuation Poor coolant Insufficient coolant Workpiece alignment Excessive stock removal | Increase feed rate (typically) Reduce speed (typically) Work-hardened hole; change drilling type Use proper coolant, coated reamer Use/increase coolant, use helical reamer Replace coolant or correct mixture Increase coolant volume Use bushing, floating holder, lead chamfer Use larger diameter starter drill | Hole Tolerance | Workpiece alignment Incorrect tool size Material shrinkage Tool wear Toolholder runout | Use bushing, floating toolholder Check diameter of tool Adjust diameter for shrinkage; more coo Sharpen or replace tool Adjust or replace toolholder | | | Incorrect feed rate Incorrect speed Tool wear Bottoming of hole | Increase feed rate (typically) Reduce speed (typically) Sharpen or replace reamer Adjust stop depth, check preset | | | | · Use bushing, floating toolholder Use larger diameter starter drill Coolant conditions Increase, replace, or correct coolant Insufficient stock removal Use smaller diameter starter drill • Poor set up • Excessive stock removal