

ULTRATOOL Series 355 and 377 Series End Mills

Series 355

Ultra-Grain® Carbide End Mill • Five Flute • 45 Degree RH Spiral

The Ultra-Tool® Series 355 End Mill is designed for the highest efficiency in the milling / finishing of steel, stainless, titanium and high temp alloys. Precision ground from Ultra-Grain®1 for top strength, the 355 features a proprietary OD hone to minimize tool break-in and the latest generation of SmoothCoat® AlTiN PVD coating. S&F's on page #58.

Premium Series EM Specs: Cutting Diam +.000/-.002 Shank Diam -.0000/-.00025 Radius ±.0005

				Square	.015R	.030R	.060R	.090R	.125R	.190R	.250R	Ball	AT
Diam	LOC	OAL	Shank	EDP#	EDP#	EDP#	EDP#	EDP#	EDP#	EDP#	EDP#	EDP#	Coated
1/8	1/2	1-1/2	1/8	31550AT	27108AT	27114AT						27169AT	\$15.10
1/8	1"	3"	1/8	27100AT	27109AT	27115AT						27170AT	\$26.20
3/16	5/8	2"	3/16	31551AT	27110AT	27116AT						27171AT	\$19.10
3/16	1-1/4	3"	3/16	27101AT	27111 AT	27117 AT						27172AT	\$30.50
1/4	3/4	2-1/2	1/4	31552AT	31562AT	27118AT						27173AT	\$25.70
1/4	1″	4"	1/4	27102AT	27112AT	27119 AT						27174AT	\$33.50
5/16	13/16	2-1/2	5/16	31553AT	27113AT	27120AT						27175AT	\$30.40
3/8	1"	2-1/2	3/8	31554AT	27502AT	27121AT	27128AT	27139AT	27150AT			27176AT	\$36.50
3/8	2"	4"	3/8	27103AT	27503AT	27122AT	27129AT	27140AT	27151AT			27177AT	\$59.10
7/16	1"	2-3/4	7/16	31555AT	27504AT	27123AT	27130AT	27141AT	27152AT			27178AT	\$47.00
1/2	1-1/4	3"	1/2	27244AT	27505AT	27245AT	27131AT	27142AT	27153AT			27179AT	\$62.70
1/2	2"	4"	1/2	27104AT	27506AT	27124AT	27132AT	27143AT	27154AT			27180AT	\$86.50
5/8	1-1/2	3-1/2	5/8	31557AT	27507AT	31567AT	27133AT	27144AT	27155AT			27181AT	\$110.30
5/8	2-5/8	5"	5/8	27105AT	27508AT	27125AT	27134AT	27145AT	27156AT			27182AT	\$151.60
3/4	1-5/8	4"	3/4	27246AT	27509AT	27247AT	27248AT	27249AT	27250AT	27251AT	27252AT	27253AT	\$152.00
3/4	2-5/8	5"	3/4	27254AT	27510AT	27256AT	27258AT	27260AT	27262AT	27264AT	27266AT	27268AT	\$224.70
3/4	4"	7"	3/4	27106AT	27511AT	27126AT	27136AT	27147AT	27158AT	27162AT	27166AT	27184AT	\$270.70
1"	1-1/2	4"	1"	31559AT	27512AT	31569AT	27137AT	27148AT	27159AT	27163AT	27167AT	27185AT	\$224.50
1"	2-5/8	5"	1"	27255AT	27513AT	27257AT	27259AT	27261AT	27263AT	27265AT	27267AT	27269AT	\$334.20
1"	4"	7"	1"	27107AT	27514AT	27127AT	27138AT	27149AT	27160AT	27164AT	27168AT	27186AT	\$412.30

High Efficiency Milling (HEM) ratio

SmoothGrind®

SmoothContricity®

SmoothEdge SmoothCoat®

Series 355/377 Geometry Enhancements

Unequal indexing (variable pitch)

Polished radial relief

Unmeasurable runout

Edge prep

Special radius transition

Opened free-cutting end cut

Series 377

Ultra-Grain® Carbide End Mill • Seven Flute • 40 Degree RH Spiral

new! New 7-flute Series!

The Ultra-Tool® Series 377 End Mill targets the same materials as the 355, yet the seven flute design allows for faster metal removal rates. Precision ground from Ultra-Grain®1 for top strength, the 377 features a proprietary OD hone to minimize tool break-in and the latest generation of SmoothCoat® AlTiN PVD coating. S&F's on page #58.

new! Standard Radius sizes throughout the range!

Premium Series EM Specs: Cutting Diam +.000/-.002 Shank Diam -.0000/-.00025 Radius +0005

27412at 27500at 27428at 27440at 27452at 27464at 27470at 27476at 27488at \$334.20

27413at 27501at 27429at 27441at 27453at 27465at 27471at 27477at 27489at \$412.30

								Tiaulus	1.0000					
				Square	.015R	.030R	.060R	.090R	.125R	.190R	.250R	Ball	AT	
Diam	LOC	OAL	Shank	EDP#	Coated									
1/4	3/4	2-1/2	1/4	27400AT	27414AT	27416AT							\$25.70	
1/4	1″	4"	1/4	27401AT	27415AT	27417AT							\$33.50	
3/8	1″	2-1/2	3/8	27402AT	27490AT	27418AT	27430AT	27442AT	27454AT			27478AT	\$36.50	
3/8	2"	4"	3/8	27403AT	27491AT	27419AT	27431AT	27443AT	27455AT			27479AT	\$59.10	
1/2	1-1/4	3"	1/2	27404AT	27492AT	27420AT	27432AT	27444AT	27456AT			27480AT	\$62.70	
1/2	2"	4"	1/2	27405AT	27493AT	27421AT	27433AT	27445AT	27457AT			27481AT	\$86.50	
5/8	1-1/2	3-1/2	5/8	27406AT	27494AT	27422AT	27434ат	27446AT	27458AT			27482AT	\$110.30	
5/8	2-5/8	5"	5/8	27407AT	27495AT	27423AT	27435AT	27447AT	27459AT			27483AT	\$151.60	
3/4	1-5/8	4"	3/4	27408AT	27496AT	27424AT	27436AT	27448AT	27460AT	27466AT	27472AT	27484AT	\$152.00	
3/4	2-5/8	5″	3/4	27409AT	27497AT	27425AT	27437AT	27449AT	27461AT	27467AT	27473AT	27485AT	\$224.70	
3/4	4"	7"	3/4	27410AT	27498AT	27426AT	27438AT	27450AT	27462AT	27468AT	27474AT	27486AT	\$270.70	
1"	1-1/2	4"	1"	27411AT	27499AT	27427AT	27439AT	27451AT	27463AT	27469AT	27475AT	27487ат	\$224.50	

High Efficiency Milling (HEM) ratio

2-5/8

4"

5"

7"

1"

1"

1"

 \blacksquare

Application Data for High Performance Series 323, 355, 377, & 365 Series ULTRATOOL End Mills

The milling data presented below is for the 323, 355, 377, and 365 Series of Ultra end mills. When using SmoothCoat & SmoothEdge surface treatments, Surface Feet or Meters Per Minute can be increased from the stated levels by at least 25%. Do not use a radial DOC exceeding more than 25% of diameter for Series 355 only.

Peripheral Milling data based on axial depth ≤ 100% of tool diameter & radial depth of ≤ 25% of tool diameter.

Slot Milling data based on axial depth of cut = 50% of tool diameter.

End Mill Specifications:

Diameter: +.000/-.002

Shank Diameter: +.0000 / -.0003 LOC: +.060 / -.000

OAL: ± .060 Helix: ± 2°

Milling; Fractional

Material	SFPM	SFPM	1/8"	3/16"	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	1"
Steel	Peripheral	Slotting					Feed Pe	r Tooth (F	PT)			
1018/1020	300 to 600	200 to 400	.0007	.0012	.0015	.0018	.0020	.0025	.0030	.0035	.0040	.0045
4140/4340/P20	250 to 500	200 to 350	.00065	.0010	.0012	.0015	.0018	.0022	.0025	.0030	.0035	.0040
Stainless Steel												
303/304/316	250 to 400	200 to 350	.0006	.0008	.0010	.0012	.0018	.0022	.0025	.0030	.0035	.0038
410/420/440C	200 to 300	150 to 250	.0006	.0008	.0010	.0012	.0018	.0022	.0025	.0030	.0035	.0038
15-5/17-4≤32HRc	200 to 350	150 to 300	.0006	.0008	.0010	.0012	.0018	.0022	.0025	.0030	.0035	.0038
15-5/17-4 ≥ 32HRc	150 to 250	150 to 250	.0004	.0006	.0008	.0010	.0015	.0020	.0020	.0025	.0030	.0035
Tool Steel												
A2/D2/H13 ≤ 32HRc	200 to 300	150 to 250	.0005	.0008	.0010	.0012	.0018	.0022	.0025	.0030	.0035	.0035
A2/D2/H13 ≥ 32HRc	150 to 250	100 to 200	.0003	.0006	.0010	.0012	.0015	.0022	.0023	.0030	.0033	.0035
AZ/ DZ/1113 2 3211KC	15010250	10010200	.0004	.0000	.0000	.0010	.0015	.0020	.0020	.0023	.0050	.005
Titanium												
6Al-4V	150 to 300	125 to 225	.0005	.0008	.0010	.0010	.0012	.0020	.0025	.0025	.0030	.0040
Ulah Tama Allaus												
High Temp Alloys Inconel 625	100 to 150	75 to 125	.0005	.0007	0010	.0012	.0012	0010	.0020	.0020	0025	0020
	100 to 150				.0010			.0018			.0025	.0030
Inconel 718	70 to 150	50 to 100	.0005	.0007	.0008	.0009	.0012	.0018	.0020	.0020	.0030	.0040
Cast Iron												
	150 to 400	150 to 200	0005	0007	0010	0012	0015	0010	0020	0020	00.40	00.45
Gray Iron ≤ 32HRc	150 to 400	150 to 300	.0005	.0007	.0010	.0012	.0015	.0018	.0020	.0030	.0040	.0045

Application Data for Series 323, 355, 377, and 365 High Performance End Mills (continued); Peel Milling

Recommendations are based upon a radial cut depth of 10% of the end mill's diameter and axial cut depth of 50-85% of the tool's LOC.

Peel milling can be performed wet or dry (with AT coating); please consult technical@toolalliance.com for specific application data.

Series 323, 355, 377, and 365 Peel Milling

Surface Feet Per Minute (SFPM) and Feed Per Tooth (FPT) recommendations by tool diameter and material:

See it run now! Scan the Quick Code and watch the Series 365 milling various materials on the Tool Alliance YouTube channel,

	recommendations by	toot alaint	eter ana n	iateriat.				tile loc	JIAIIIUIICE	Tourube	chamilet.
Material	SFPM	1/8"	3/16"	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	1"
Steel 1018 / 1020	Peripheral 400 to 600	.001003	.001004	.0015005	.002008	Feed Pe	r Tooth (F .003010	PT) .003010	.003010	.004012	.004012
4140/4340/P20	350 to 500	.001002	.001003	.001004	.0015006	.0015006	.002007	.002007	.002007	.0025008	.0025008
Stainless Steel 303/304/316	300 to 500	.001002	.001003	.0015004	.002006	.002006	.003008	.003008	.003008	.003010	.003010
410/420/440C	250 to 400	.001002	.001003	.0015004	.002006	.002006	.003008	.003008	.003008	.003010	.003010
15-5/17-4 ≤ 32HRc	300 to 500	.001002	.001003	.0015004	.002006	.002006	.003008	.003008	.003008	.003010	.003010
15-5/17-4≥32HRc	200 to 300	.0005002	.0005002	.001003	.0015005	.0015005	.002006	.002006	.002006	.003008	.003008
Tool Steel A2/D2/H13 ≤ 32HRc A2/D2/H13 ≥ 32HRc	250 to 350 200 to 300	.001002	.001003	.0015004	.002006	.002006	.003008	.003008	.003008	.003010	.003010
Titanium	200 to 300	.001002	.001003	.0013004	.002000	.002000	.005006	.005008	.005008	.005010	.005010
6Al-4V	250 to 300	.001002	.001003	.0015004	.002006	.002006	.003008	.003008	.003008	.003010	.003010
High Temp Alloys Inconel 625	125 to 200	.0005002	.0005002	.001003	.0015005	.0015005	.002006	.002006	.002006	.003008	.003008
Inconel 718	100 to 150	.0005002	.0005002	.001003	.0015005	.0015005	.002006	.002006	.002006	.003008	.003008
Cast Iron											
Gray Iron ≤ 32HRc	250 to 500	.001002	.001003	.001004	.0015006	.0015006	.002007	.002007	.002007	.0025008	.0025008

Components of Guaranteed Quality

COMPONENT#1: Carbide Substrate From being the first Company to introduce MicroGrain carbide to the mass-market round tool industry through the present day, Tool Alliance® has consistently innovated new powder and grade combinations for demanding applications. We recognize that our material is the very first Significant Characteristic. By creating partnerships with a limited number of tungsten powder and cemented-carbide material suppliers, we are able to guarantee that our customers receive precision-tolerance tools ground from only the purest, finest grades available worldwide. The following photographs of Ultra-Carb® 1 and Ultra-Grain® 1 respectively demonstrate the complexity of the compound we commonly refer to as Cemented Carbide. Taken at magnification of 10,000 X through an SEM (Scanning Electron Microscope), the visible grains are tungsten while the cobalt binder appears as dark shadows. The largest tungsten grains appearing in the Ultra-Carb photo are less than one micron in size. Note that these grades are two samples representing more than a dozen different substrates we use throughout our product lines, each having a particular application niche. Compared to other industry participants, you will find that Tool Alliance offers the best month-to-month and year-to-year consistency in carbide grain structure.

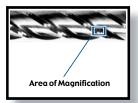
Ultra-Carb® 1

Cobalt Percentage: 6%
Grain Size (µm): ≤ 0.8
Hardness: 93.5 HRa
Fracture Toughness (K1c): 6.6
TRS (GPa): 3.8
Density (gm/cc): 14.90

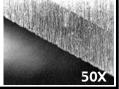
ULTRA-Carb®

Ultra-Grain® 1

Cobalt Percentage: 10%
Grain Size (µm): ≤ 0.7
Hardness: 92.7 HRa
Fracture Toughness (K1c): 7.9
TRS (GPa): 4.1
Density (gm/cc): 14.30


(III) TOA Crains

(ULTRA-Grain)



SmoothGrind®

COMPONENT #2: The Grinding Process After selecting the best material available, Tool Alliance has perfected the manufacturing technology to optimize 100% of its physical properties. We call this process SmoothGrind®. Years in development, SmoothGrind is the result of a proprietary combination of material, abrasive, coolant, machine-tool, software, and grinding method technologies that produce

ULTRATOOL 200X

SmoothGrind® Competitor's

cutting tools with superior qualitative characteristics. Sharper and longer lasting cutting edges, enhanced work piece finishes, and much improved lubricity are just some of the benefits brought to you by the latest solid carbide rotary tooling advances from Tool Alliance. The two photos above display an Ultra-Tool end mill primary relief featuring SmoothGrind (left) versus a major competitor's product (right). To fully demonstrate the difference, the Ultra end mill is shown at double the magnification. Note the straight line of our end mill's primary relief in comparison to the jagged edge of the competing product. Keep in mind the competitive end mill is a very good product that has a large following, yet the difference is substantial.

SmoothContricity®

COMPONENT#3: The Tooling Process All the best physical ingredients are wasted unless they are all pulled together in a comprehensive system that maximizes their respective attributes. Tool Alliance calls this process SmoothContricity®. Our customer base represents the leading edge of machine tool utilization, and

SmoothContricity ensures that optimum results can be obtained in a variety of ways; minimized run-out (TIR), industry-leading tolerances on diameter & radius, and 100% Shrink Fit Ready (SFR) shanks. Combined, these attributes allow our consumers to reach full machining potential and position the cutting tool as a systematic contributor to process consistency and repeatability.

.0001 SmoothEdge atop
cylindrical margin atop primary relief.

COMPONENT #4: The Edge Preparation Process

Our cutting edges are literally too sharp for certain materials. For our carbide inserts and now increasingly for our solid carbide round tools, proper edge preparation can yield huge productivity improvements to "out of the box" tool application. Using a treatment we call SmoothEdge® and performed on machine tools developed in our own R&D lab, we've taken the mystery out of tool "break-in" and provided a consistency that can be counted on time and again. The processes range from a microblasting treatment using extremely fine aluminum oxide powder to a diamond-lapping compound to brushes. All are application-specific to sound and run smooth from the first cut and protect your tooling investment from unnecessary potential for chipping during your initial tooling paths. Big productivity gains can be achieved in certain applications as well due to improved chip formation and evacuation. Learn more about SmoothEdge on Page #55.

Our coating @ 2,000X (top). Everybody else's (bottom).

SmoothCoat®

COMPONENT #5: The Coating Process The challenge of finding a coating method to leverage 100% of the inherent assets of our carbide grade and grinding technologies was difficult. What we finally discovered was such a perfect fit and so logical for our product lines that we invested heavily into the process we now call SmoothCoat®. Much more than simply the standard arc-deposited PVD coating, SmoothCoat involves sputter multi-layering and a multi-step prep & post operation called Micro-Blasting. The advantages of this procedure include relieving of tensile stresses underneath the cutting edge, increased stability of the coating surface, and perhaps most importantly, elevating SmoothGrind even another notch by leveling and activating the cemented carbide substrate. The result is a smooth, shiny, tough, and durable surface that can withstand tomorrow's machining requirements and outlast competitive coatings. Additionally, we've made it a standard feature on thousands of our standard catalog items. Our coating services are performed within our own factories for quality & extremely quick turnaround times.

Coating Availability Order by adding the suffix TA, TN, AT, TC, A1, D1, or D2 to the EDP #.

UnCoated

Material Hardness

Premium Coatings available

Standard Coatings available at "Coated" List Price

materials up to 70HRc including high-temp exotics, nickel based alloys, die & hardened steels

ideal for dry milling & high speed machining

materials up to 50HRc including steel, stainless steel, & cast iron

areat choice for wide range of materials wet & dry applications

up to 30HRc

excellent lubricity & wear

aluminum, steel & stainless steel

> lower temp applications

aluminum, titanium, & non-ferrous

tremendous lubricity, reduced weld allows for dry milling

extreme hardness for wearability in graphites, plastics, silicon alloys & other abrasive materials

sharpest diamond edge

Multiple in-house coating systems offer superb quality and service.

extreme hardness for long life (10-50x) in graphite, carbon, composites & high silicon aluminum

> thickest diamond coating

SmoothCoat®

Material Abrasiveness

 \blacksquare

Page # 55 rev2020.1 (7)

ULTRATOOL Technical Data

The Edge Preparation Process

Our cutting edges are literally too sharp for certain materials. For our carbide inserts and now increasingly for our solid carbide round tools, proper edge preparation can yield huge productivity improvements to "out of the box" tool application. Using a process we call SmoothEdge® and performed on machine tools developed in our own R&D lab, we've taken the mystery out of tool "break-in" and provided a consistency that can be counted on time and again. All five types of SmoothEdge will yield different benefits dependent upon application. SmoothEdge will make your tools sound and run smooth from the first cut and protect your tooling investment from unnecessary potential for chipping during initial tool paths.

Combine Smooth Edge with our other value added features to design the ultimate cutting solution.

Primary SmoothCoat recommendations:

A1 for SE2

TA for SE4

AT for SE5

while on others it can be added as a same day post treatment for a small charge. Ask your Inside Sales representative about SmoothEdge today!

SmoothEdge 1

Our newest technology can achieve incredible productivity increases in specific

applications. Many of our new Series include SmoothEdge as a standard feature,

A microblasting treatment using extremely fine aluminum oxide powder to smooth the carbide surface while generating a very light edge preparation. This feature comes standard with any SmoothCoat® coating.

Uses: Highly recommended for most milling and drilling applications.

SmoothEdge 2

A lapping treatment to create extreme lubricity & smoothness with minimal edge prep on uncoated tools.

Uses: Highly recommended for milling and drilling of aluminum and other non-ferrous applications using UnCoated, A1, or TC coated tools.

SmoothEdge 3

Combines microblasting and lapping for a light hone with extreme lubricity.

Uses: Highly recommended for a wide range of general purpose machining applications using coated tools.

SmoothEdge 4

Adds a proprietary hone to the blasting and lapping cycles for a medium edge prep with excellent lubricity.

Uses: Highly recommended for milling and drilling applications involving general steels, stainless, and cast iron.

Doubles the honing and lapping cycle for maximum edge strength; a robust edge preparation combined with excellent lubricity characteristics.

Uses: Highly recommended for milling and drilling applications involving stainless, hightemp alloys, and exotics.

ULTRATOOL Technical Data

With so many variables present in the machining process, it is essential to optimize every possible factor to achieve world-class efficiency. Your choice of a genuine Ultra-Tool® Solid Carbide product is an excellent first step in the process. Ultra-Tool® Solid $Carbide\ products\ are\ high-performance\ tools\ that\ will\ perform\ bestin\ a\ machining\ environment\ characterized\ by\ rigid\ fixturing$ and minimal spindle runout. Attention to proper speed and feed will eliminate vibration, chatter, and overheating as well as extending tool life. Generally speaking, the peripheral speed of solid carbide tools will vary with the hardness of the material being cut. The harder the material, the slower the speed. High speed and insufficient feed will cause work surface glazing and poor tool life. Chipping of cutting edges is an indication of chatter which can be caused by too high of speed, too light of cut, or improper support of the tool or workpiece. Handling is also very important; sharpened cutting edges should never be allowed to come into contact with any hard object (or another tool) in a non-machining environment as they will chip easily. Keep your Ultra-Tool® products in their original protective packaging until ready for use.

The guidelines on the following pages are generalities designed to demonstrate the operating window within which you may experience the best results. The charts and information provided should prove valuable in longer tool life with greatly reduced operational costs. This information is for uncoated product: SmoothCoat products will have significantly higher speed and feed rates. For more information contact an Ultra-Tool® Factory Engineer, Sales Manager or consult our websites at ultra-tool.com and toolalliance.com. eMails can be sent to technical@toolalliance.com.

Ultra-Tool International, Inc. is constantly striving to improve its processes, specifications, and tolerances. As such, products are subject to change without prior notice.

WARNING: Grinding or other use of this tool may produce hazardous dust and fumes which may endanger health. Grinding or modification should be done by professionals only. To avoid adverse health effects, read the material safety data sheet for this product. Utilize adequate ventilation and appropriate protection. Cutting tools may shatter when broken; eye protection in vicinity of use is strongly advised. MSDS available at www.ultra-tool.com.

Commonly Used Formulas:

Surface Feet Minute (SFM)=RPM x Diam. x .262 Revolutions Per Minute (RPM)= $3.82 \times (SFM / Diam.)$ Feed Rate (IPM)=IPT x #teeth x RPM Drilling (IPM)=IPR x RPM Feed Per Tooth (IPT)=IPM / (#teeth x RPM) Convert Inches to millimeters: Multiply by 25.4 Convert millimeters to Inches: Multiply by .03937

Tech Help Call, eMail us at technical@toolalliance.com, or copy / fax us this page for detailed assistance beyond what printed materials can provide. Please have the following information available to assure we can promptly process a response.

Checklist: Tool Description

Application Description

Work Piece Material

Hardness (HRc)

Current Speed (RPM or SFPM)

Current Feed (CPT or IPM or FPR)

Axial DOC

Radial DOC

Hole Depth (drilling)

Machine Tool

Slot Milling

Pocket Millina

Peripheral Milling

0

phone 714.898.9224 / 800.854.2431 / fax 714.891.7816 5451 McFadden Avenue • Huntington Beach, CA 92649

Page # 57 rev2020.1 🚳

Application Tips for ULTRATOOL Solid Carbide Products

Trouble Shooting for Ultra-Tool® Carbide End Mills

Duchlous	Course	Calution
Problem	Cause	Solution
Chipping	Feed rate too high Up milling (conventional) Cutting edge too sharp Chattering Loose tool Workpiece rigidity Tool rigidity Low cutting speed Loose toolholder	Reduce feed rate Change to down milling (climb) Hone cutting edge or allow break-in Reduce RPM Remove, clean, and retighten Tighten workpiece holding method Shorten LOC, place shank further up holde Increase RPM Remove from spindle, clean and replace
Wear	High cutting speed Low feed rate Up milling (conventional) Hard material Poor chip evacuation Improper cutter helix Poor coolant	Reduce RPM Increase feed rate Change to down milling (climb) Use coated tool Reposition coolant lines, use air blasting Change to recommended helix angle Replace coolant or correct mixture
Breakage	Feed rate too high Depth of cut too large Poor tool rigidity Tool wear Poor chip evacuation	Reduce feed rate Reduce depth of cut Shorten LOC, place shank further up hold Replace/regrind sooner Reposition coolant lines, use air blasting
Chattering	Speed and feed too high Poor toolholder rigidity Poor spindle rigidity Workpiece rigidity Relief angle too high Depth of cut too large Poor tool rigidity	Reduce feed rate Replace with shorter/more rigid holder Use larger spindle or different machine too Tighten workpiece holding method Regrind with smaller relief angle Reduce depth of cut Shorten LOC, place shank further up holding
Short Life	Cutter/workpiece friction Hard material Poor material condition Improper cutter angle Poor coolant	Use coated tool Use coated tool Use coated tool, clean material surface Regrind with proper primary relief angle Replace coolant or correct mixture
Chip Packing	Feed rate too high Low cutting speed Insufficient chip room Insufficient coolant	Reduce feed rate or increase speed Increase RPM or reduce feed rate Use tool with less flutes, increase helix Increase volume of coolant
Poor Surface Finish	Feed rate too high Low cutting speed Tool wear Edge build up Depth of cut too large Chip welding	Reduce feed rate Increase RPM Replace or regrind tool Increase RPM, switch to higher helix tool Reduce depth of cut Increase volume of coolant
Burring or Workpiece Chipping	Tool wear Improper helix angle Feed rate too high Depth of cut too large	Replace or regrind tool Change to recommended helix angle Reduce feed rate Reduce depth of cut
Workpiece Inaccuracy	Loose/worn toolholder Poor toolholder rigidity Poor spindle rigidity Insufficient number of flutes Tool deflection	Repair or replace Replace with shorter/more rigid toolholder Use larger spindle or different machine too Use tool with higher flute quantity Shorten LOC, place shank further up holder

Trouble Shootin	for Ultra-T	Tool® Carbide Dr	ill
------------------------	-------------	------------------	-----

Problem	Cause	Solution (see key below)
Heavy Wear at Outer Edge	Insufficient coolant Incorrect speed & feed	• 5, 6 • 1, 2, 8
Chipping at Outer Cutting Edge	Loose tool, tool movement Workpiece movement Poor coolant conditions Incorrect speed & feed	• 8, 10, 11, 12, 14, 16, 17, 21 • 8, 12, 13, 21 • 5, 6 • 1, 2, 3, 4
Drill Point Chipping	Loose tool, tool movement Incorrect speed & feed Drill centering	• 10, 11, 12, 14 • 1, 2, 3, 4 • 8, 10, 11, 12, 21
Margin Wear	Drill margin rubbing wall Poor chip evacuation Poor coolant conditions Workpiece movement	• 20 (check drill for backtaper) • 5, 6, 8, 20 • 5, 6 • 8, 13, 21
Tool Breakage	Loose tool, tool movement Workpiece movement Wrong drill type Poor coolant conditions Incorrect speed & feed	• 8, 10, 11, 12, 14, 16, 17, 21 • 8, 12, 13, 21 • 9, 15, 16, 18, 19, 20 • 5, 6 • 1, 2, 3, 4
Poor Tool Life	Incorrect speed & feed Poor coolant conditions Wrong drill point	• 1, 2, 3, 4 • 5, 6 • 8, 21
Drill Walk	Incorrect speed & feed Tool wear Wrong drill point Material condition	• 1, 2 • 7, 8, 21 • 8, 10, 11, 21 • 11, 12, 15, 16, 17
Chip Welding	Poor coolant conditions Wrong drill type	• 5, 6 • 19, 20
Hole Size Inaccuracy	Incorrect speed & feed Poor coolant conditions Loose tool Wrong drill type	• 1, 2, 3, 4 • 5, 6 • 14 • 9, 18
Non-Cylindrical Hole	Loose tool, tool movement Workpiece movement Incorrect speed & feed Wrong drill type	• 8, 10, 11, 12, 14, 16, 17 • 13 • 1, 2 • 18, 21
Heavy Burr	Incorrect speed & feed Incorrect drill point	• 1, 2 • 8, 21
Blue Chips	Poor coolant conditions Tool wear	• 5, 6 • 7, 8
Long Chips	Poor point grind Incorrect speed & feed	• 8 • 1, 2
Solutions Key for Drills	2) Increase feed 9) Col 3) Increase RPM 10) Usi 4) Reduce feed 11) Spo 5) Increase coolant 12) Cle	prove rigidity/clamp 20) Use parabolic design

Trouble Shooting for Ultra-Tool® Carbide Reamers

Problem	Cause	Solution	Problem	Cause	Solution
Chatter	High cutting speed Feed rate too low Workpiece movement Toolholder rigidity Tool rigidity	Lower RPM or increase feed rate Increase feed rate Tighten workpiece rigidity Tighten toolholder or reduce float Use shorter tool, place further up holder	Poor Finish	Feed rate too low Insufficient stock removal Poor hole condition Poor coolant Insufficient coolant	Increase feed rate Use smaller diameter starter drill Work-hardened hole; change drilling typ Replace/correct coolant mixture Increase coolant volume
Tool Wear / Chipping	Incorrect feed rate Incorrect speed Poor hole condition Abrasive material Poor chip evacuation Poor coolant Insufficient coolant Workpiece alignment Excessive stock removal	Increase feed rate (typically) Reduce speed (typically) Work-hardened hole; change drilling type Use proper coolant, coated reamer Use/increase coolant, use helical reamer Replace coolant or correct mixture Increase coolant volume Use bushing, floating holder, lead chamfer Use larger diameter starter drill	Hole Tolerance	Workpiece alignment Incorrect tool size Material shrinkage Tool wear Toolholder runout	Use bushing, floating toolholder Check diameter of tool Adjust diameter for shrinkage; more coo Sharpen or replace tool Adjust or replace toolholder
	Incorrect feed rate Incorrect speed Tool wear Bottoming of hole	Increase feed rate (typically) Reduce speed (typically) Sharpen or replace reamer Adjust stop depth, check preset			

· Use bushing, floating toolholder

Use larger diameter starter drill

Coolant conditions
 Increase, replace, or correct coolant
 Insufficient stock removal
 Use smaller diameter starter drill

• Poor set up

• Excessive stock removal